Geographic Information Systems (GIS) Based Accessibility Modeling Approach in Micro Scale Considering Physically Disabled Users: Case Study of Mimar Muzaffer Campus, Selcuk University

Kıvanç Ertuğay


The concept of physical accessibility refers to the availability, capability, comfort, convenience of transportation processes considering different urban obstacles / barriers and costs.  In this context, there are many approaches for the measurement and evaluation of physical accessibility in the literature which are used extensively as a decision support especially in transportation, geography and city and regional planning related disciplines.

Although there are large number of modeling approaches on physical accessibility modeling in macro scales (such as national, regional, city and town scales), the research on physical accessibility modeling, in micro scales (such as street, human, neighborhood scales), which could consider all the details of the perceived space seem to be extremely limited.

This study, which emerged from this lack of accessibility modeling literature, proposes a GIS-supported methodology to demonstrate how physical obstacles / barriers such as “buildings, landscape areas, walls, steps, stairs, pits, unfitted street furniture, other (garbage, rubbles, trees etc. that prevent access) etc.” and transitions such as “ramps with appropriate slope, elevators and/or “removing walls / steps” could be defined in GIS environment and how access and circulation in (outdoor) urban space could be modeled considering these physical obstacles / barriers and transitions especially taking physically disabled users (users using wheelchair, bicycle, baby's car, market car etc.) into consideration in the micro scale.

The proposed accessibility modeling methodology is conducted at Selçuk University, Faculty of Architecture, Mimar Muzaffer Campus Area. A polyline-based spatial GIS database has been developed to demonstrate how physical barriers and transitions could be modeled in micro scale in GIS environment in order to evaluate physical accessibility. The results of the study could provide an accessibility based decision support environment by visualizing and presenting how physical obstacles in urban space prevent physically disabled users from access and circulation and how the elimination or removal of these physical obstacles and creation of transitions will create a difference in access and circulation for the users in a comparable manner especially in micro scale.

This study is thought to make a significant contribution to increase accessibility levels of physically disabled users (users using wheelchair, bicycle, baby's car, market car etc.) in the outdoor urban areas in terms of demonstrating their accessibility and circulation capabilities.

The first primitive experimental model related with this research was carried out with the participants of the accessibility measurement and modeling session at the 3rd National Disability Workshop which is held in Selcuk University, Mimar Muzaffer Campus dated 2-3 May 2018.


Accessibility modeling, physically disabled users, physical obstacles / barriers / transitions, micro scale (street, human, neighborhood scales)

Full Text:



Bagheri, N., Benwell, G. L., Holt, A., (2006), Primary health care accessibility for rural Otago: ‘‘a spatial analysis’’, Health Care & Informatics, Review Online

Bauer, J., Muller, P., Maier, W., & Groneberg, D. A. (2017). Orthopedic workforce planning in Germany - an analysis of orthopedic accessibility. Plos One, 12(2). doi:ARTN e017174710.1371/journal.pone.0171747

Black M., Ebener, S., Vidaurre, M., Aguilar, P. N., El Morjani, Z., (2004), Using GIS to Measure Physical Accessibility to Health Care, Health GIS Conference Proceedings, International ESRI User Conference, San Diego

Boulos, M. N., Roudsari, A. V., Carson, E. R., (2001), Health Geomatics: An Enabling Suite of Technologies in Health and Healthcare, Journal of Biomedical Informatics, Volume 34, Issue 3, June 2001, Pages 195-219, (Published: 22 September 2006)

Brabyn L., Skelly C., (2002), Modeling population access to New Zealand public hospitals International Journal of Health Geography, volume 1, page 1: 3, Published online 2002 November 12. DOI: 10.1186/1476-072X-1-3

Chapelet P., Lefebvre B., (2005), Contextualizing the Urban Healthcare System. Methodology for developing a geodatabase of Delhi's healthcare system, CSH Occasional Paper N°11, Publication of the French Research Institutes in India, Rajdhani Art Press, New Delhi (135 pages)

Chen, Q., (2000) Measuring Accessibility in GIS, chen/measuring_accessibility_in_gis.htm

Cheng, G., Zeng, X. K., Duan, L., Lu, X. P., Sun, H. C., Jiang, T., & Li, Y. L. (2016). Spatial difference analysis for accessibility to high level hospitals based on travel time in Shenzhen, China. Habitat International, 53, 485-494. doi:10.1016/j.habitatint.2015.12.023

Cheng, J. Q., Bertolini, L., le Clercq, F., & Kapoen, L. (2013). Understanding urban networks: Comparing a node-, a density- and an accessibility-based view. Cities, 31, 165-176. doi:10.1016/j.cities.2012.04.005

Delamater, P. L. (2018). Comment on "A Conceptual Framework for Quality Healthcare Accessibility: a Scalable Approach for Big Data Technologies". Information Systems Frontiers, 20(2), 303-309. doi:10.1007/s10796-018-9829-8

Delso, J., Martin, B., Ortega, E., & Otero, I. (2017). A Model for Assessing Pedestrian Corridors. Application to Vitoria-Gasteiz City (Spain). Sustainability, 9(3). doi:ARTN 43410.3390/su9030434

Ebener, S., El Morjani, Z., Ray, N., Black, M., (2005), Physical Accessibility to health care: From Isotropy to Anisotropy, The Global Geospatial Magazine, GIS@development

Fortney, J., Rost, K., and Warren, J., (2000), Comparing Alternative Methods of Measuring Geographic Access to Health Services, Journal Health Services and Outcomes Research Methodology, springer, Volume 1, Number 2 / June, 2000, p: 173-184

Gallego, J. A. G., Nieto, R. B., Labrador, E. E. R., Cabanillas, F. J. J., & Jeong, J. S. (2014). An Accessibility Analysis to the City Bus Stops in Merida (Spain). Boletin De La Asociacion De Geografos Espanoles(64), 249-+.

Ghio, C., Mark L., Abdulkadir, N., Ahmed, A., (2007), Health GIS Tools and applications informing decisions in Yemen, Geospatial Application Papers, health/overview/ me05_012a.htm

Gibin, M., Longley, P., & Atkinson, P., (2007), Kernel density estimation and percent volume contours in general practice catchment area analysis in urban areas, In Proceedings of the GIScience research UK conference (GISRUK), Ireland: Maynooth

Goulias, K. G., (2007), An Optimal Resource Allocation Tool for Urban Development Using GIS-based Accessibility Measures and Stochastic Frontier Analysis, University of California, Santa Barbara California PATH Research Report, UCB-ITS-PRR-2007-7

Guagliardo, M. F., (2004), Spatial accessibility of primary care: concepts, methods and Challenges, International Journal of Health Geographics 2004, 3:3

Halden, D., Mcguigan, D., Nisbet, A., Mckinnon, A., (2000) Guidance On Accessibility Measuring Techniques And Their Application, Scottish Executive Central Research Unit, ISBN: 1842680013

Higgs, G., Zahnow, R., Corcoran, J., Langford, M., & Fry, R. (2017). Modelling spatial access to General Practitioner surgeries: Does public transport availability matter? Journal of Transport & Health, 6, 143-154. doi:10.1016/j.jth.2017.05.361

Joseph, P. M., Ashton, M. S., Richard, E. G., Pariwate, V.,

Mark, J. F., (2006), Evaluating Michigan's community hospital access: spatial methods for decision support, International Journal of Health Geographics 2006, p: 5-42

Juliao, R. P., (1999) Measuring Accessibility Using Gis Geo-computation-99 Conference, Mary Washington College, Virginia, USA

Kuntay, O., (1976a), Planlama Kontrol Aracı Olarak Fiziksel Erişilebilirlik Ve Çekim Gücü, Şehircilik Enstitüsü Dergisi, İTÜ, İstanbul, p: 33-47,

Kuntay, O., (1990), Erişilebilirlik Kesin Bir Öncelik, Planlama Dergisi (Journal of the Chamber of City Planners), 90/1-2, 7 (in Turkish)

Kwan, M. P. (1998), Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework, Geographical Analysis, 30, p: 191-216

Langford, M., Fry, R., & Higgs, G. (2012). Measuring transit system accessibility using a modified two-step floating catchment technique. International Journal of Geographical Information Science, 26(2), 193-214. doi:10.1080/13658816.2011.574140

Langford, M., Higgs, G., & Fry, R. (2012). Using floating catchment analysis (FCA) techniques to examine intra-urban variations in accessibility to public transport opportunities: the example of Cardiff, Wales. Journal of Transport Geography, 25, 1-14. doi:10.1016/j.jtrangeo.2012.06.014

Liang, H. L., & Zhang, Q. P. (2018). Assessing the public transport service to urban parks on the basis of spatial accessibility for citizens in the compact megacity of Shanghai, China. Urban Studies, 55(9), 1983-1999. doi:10.1177/0042098017705846

Luo, W., (2004), Using a GIS-based floating catchment method to assess areas with shortage of physicians, Health and Place, 10, p: 1-11

Luo, W., Wang, F., (2003), Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region Environment and Planning B: Planning and Design, volume 30, p: 865- 884

Makrí, M. B., (2002), Accessibility indices and planning theory, Eighth International Conference on Urban Transport and the Environment for the 21st Century, Urban Transport VIII, p: 37-46

Matthew R., McGrail, J., Humphreys, S., (2009), Measuring spatial accessibility to primary care in rural areas: Improving the effectiveness of the two-step floating catchment area method, Applied Geography, 29, p: 533-541

Mitchel, L., Gary, H., Jonathan R., Sean W., (2008), Urban Population Distribution Models and Service Accessibility Estimation, Computers, Environment And Urban Systems, 32, p: 66-80

Nadine, S., Robert S. F., Stefan C. W. G., Darrin, G., (2006), Defining rational hospital catchments for non-urban areas based on travel-time, International Journal of Health Geographics, p: 5-43

Nieves, J. J. (2015). Combining Transportation Network Models with Kernel Density Methods to Measure the Relative Spatial Accessibility of Pediatric Primary Care Services in Jefferson County, Kentucky. International Journal of Applied Geospatial Research, 6(3), 39-57. doi:10.4018/ijagr.2015070103

O'Sullivan, D., Alastair, M., John, S., (2000), Using desktop GIS for the investigation of accessibility by public transport: An isochrone approach, International Journal of Geographical Information Science, Vol. 14, No1, p: 85-104

Radke, J., Mu, L., (2000), Spatial Decompositions, Modeling and Mapping Service Regions To Predict Access To Social Programs, Geographic Information Sciences, Vol. 6, No. 2

Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5), 381-394. doi:10.1080/15568318.2016.1262927

Scott, J., Larson, A., Jefferies, F. and Veenendaal, B., (2006), Small-area estimates of general practice workforce shortage in rural and remote Western Australia, Australian Journal of Rural Health, Volume 14, Issue 5, published Online: 10 Oct 2006, p: 209-213

Sylvie, D., (2007), Gis-Based Accessibility Analysis For Network Optimal Location Model, Article 407, Cybergeo, Systems, Modelisation Geostatistiques

Vadrevu, L., & Kanjilal, B. (2016). Measuring spatial equity and access to maternal health services using enhanced two step floating catchment area method (E2SFCA) - a case study of the Indian Sundarbans. International Journal for Equity in Health, 15. doi:ARTN 8710.1186/s12939-016-0376-y

Xu, K. S., & Cui, W. G. (2012). A GIS-Based Assessment of Spatial Accessibility to County Hospitals: A Case Study of Dancheng County, China. Information and Business Intelligence, Pt Ii, 268, 454-460.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2018 Iconarp International Journal of Architecture and Planning

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

                                                                                     INDEXES & DATABASES:

                            ICONARP International Journal of Architecture and Planning is an OAJ supported by Selcuk University, ©2018,